Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The Chilean Observation Network De Meteor Radars (CONDOR) commenced deployment in June 2019 and became fully operational in February 2020. It is a multi-static meteor radar system consisting of three ∼ 1° latitudinally separated stations. The main (central) station is located at the Andes Lidar Observatory (ALO; 30.25° S, 70.74° W) and is used for both transmission and reception. The two remote sites are located to the north and south and are used for reception only. The southern station is located at the Southern Cross Observatory (SCO; 31.20° S, 71.00° W), and the northern station is located at the Las Campanas Observatory (LCO; 29.02° S, 70.69° W). The successful deployment and maintenance of CONDOR provide 24/7 measurements of horizontal winds in the mesosphere and lower thermosphere (MLT) and permit the retrieval of spatially resolved horizontal winds and vertical winds. This is possible because of the high meteor detection rates. Over 30 000 quality-controlled underdense meteor echoes are detected at the ALO site each day, and in total ∼ 88 000 events are detected each day over the three sites. In this paper, we present the configuration of the CONDOR system and discuss the validation and initial results of its data products. The motivations of deploying the CONDOR system also include combining measurements from other co-located ground-based instruments at the ALO site, which provide uniquely cross-validated and cross-scale observations of the MLT dynamics with multiple scientific goals.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract. A narrow-band sodium lidar provides high temporal and vertical resolution observations of sodium density, atmospheric temperature, and wind that facilitate the investigation of atmospheric waves in the mesosphere and lower thermosphere (80–105 km). In order to retrieve full vector winds, such a lidar is usually configured in a multi-direction observing mode, with laser beams pointing to the zenith and several off-zenith directions. Gravity wave events were observed by such a lidar system from 06:30 to 11:00 UT on 14 January 2002 at Maui, Hawaii (20.7° N, 156.3° W). A novel method based on cross-spectrum was proposed to derive the horizontal wave information from the phase shifts among measurements in different directions. At least two wave packets were identified using this method: one with a period of ∼ 1.6 h, a horizontal wavelength of ∼ 438 km, and propagating toward the southwest; and the other one with a ∼ 3.2 h period, a ∼ 934 km horizontal wavelength, and propagating toward the northwest. The background atmosphere states were also fully measured and all intrinsic wave properties of the wave packets were derived. Dispersion and polarization relations were used to diagnose wave propagation and dissipation. It was revealed that both wave packets propagate through multiple thin evanescent layers and are possibly partially reflected but still get a good portion of energy to penetrate higher altitudes. A sensitivity study demonstrates the capability of this method in detecting medium-scale and medium-frequency gravity waves. With continuous and high-quality measurements from similar lidar systems worldwide, this method can be utilized to detect and study the characteristics of gravity waves of specific spatiotemporal scales.more » « less
-
Abstract Vertical energy transports due to dissipating gravity waves in the mesopause region (85–100 km) are analyzed using over 400 h of observational data obtained from a narrow‐band sodium wind‐temperature lidar located at Andes Lidar Observatory (ALO), Cerro Pachón (30.25°S, 70.73°W), Chile. Sensible heat flux is directly estimated using measured temperature and vertical wind; energy flux is estimated from the vertical wavenumber and frequency spectra of temperature perturbations; and enthalpy flux is derived based on its relationship with sensible heat and energy fluxes. Sensible heat flux is mostly downward throughout the region. Enthalpy flux exhibits an annual oscillation with maximum downward transport in July above 90 km. The dominant feature of energy flux is the exponential decrease from 10−2to 10−4 W m−2with the altitude increases from 85 to 100 km and is larger during austral winter. The annual mean thermal diffusivity inferred from enthalpy flux decreases from 303 m2s−1at 85 km to minimum 221 m2s−1at 90 km then increases to 350 m2s−1at 99 km. Results also show that shorter period gravity waves tend to dissipate at higher altitudes and generate more heat transport. The averaged vertical group velocities for high, medium, and low frequency waves are 4.15 m s−1, 1.15 m s−1, and 0.70 m s−1, respectively. Gravity wave heat transport brings significant cooling in the mesopause region at an average cooling rate of 6.7 ± 1.1 K per day.more » « less
-
Abstract A compressible numerical model is applied for three‐dimensional (3‐D) gravity wave (GW) packets undergoing momentum deposition, self‐acceleration (SA), breaking, and secondary GW (SGW) generation in the presence of highly‐structured environments enabling thermal and/or Doppler ducts, such as a mesospheric inversion layer (MIL), tidal wind (TW), or combination of MIL and TW. Simulations reveal that ducts can strongly modulate GW dynamics. Responses modeled here include reflection, trapping, suppressed transmission, strong local instabilities, reduced SGW generations, higher altitude SGW responses, and induced large‐scale flows. Instabilities that arise in ducts experience strong dissipation after they emerge, while trapped smaller‐amplitude and smaller‐scale GWs can survive in ducts to much later times. Additionally, GW breaking and its associated dynamics enhance the local wind along the GW propagation direction in the ducts, and yield layering in the wind field. However, these dynamics do not yield significant heat transport in the ducts. The failure of GW breaking to induce stratified layers in the temperature field suggests that such heat transport might not be as strong as previously assumed or inferred from observations and theoretical assessments. The present numerical simulations confirm previous finding that MIL generation may not be caused by the breaking of a transient high‐frequency GW packet alone.more » « less
-
Abstract The extension of the neutral sodium (Na) layer into the thermosphere (up to 170 km) has recently been observed at low and high latitudes using a Na lidar. However, the geophysical mechanisms and implications of its formation are currently unknown. In this study, we conduct an advanced two‐dimensional numerical simulation of the Na and Na+variations in theEandFregions at low latitudes. The numerical simulations are used to investigate the contributions of the electromagnetic force, neutral wind, diffusion, and gravity. The simulations lead to three major findings. First, Na+in the subtropical region of the geomagnetic equator acts as the major reservoir of the neutral sodium, and its distribution during nighttime is mostly below 200 km due to the combined effect of the vertical component of thedrift and Coulomb‐induced drift. Second, we find that the fountain effect has little influence on the behavior of Na in the nighttime. Third, the probable explanation for the frequent generation of the thermospheric sodium layer during spring equinox at Cerro Pachón, Chile is attributed to the large vertical neutral transport generated by large vertical wind perturbations of unknown origin, with a magnitude exceeding 10 m/s that is closely associated with the semidiurnal tide.more » « less
-
Abstract In order to understand the characteristics of long‐lasting “C‐type” structure in the Sodium (Na) lidargram, six cases from different observational locations have been analyzed. The Na lidargram, collected from low‐, middle‐, and high‐latitude sites, show long lifetime of the C‐type structures which is believed to be the manifestation of Kelvin‐Helmholtz (KH) billows in the Mesosphere and Lower Thermosphere (MLT) region. In order to explore the characteristics of the long‐lasting C‐type structures, the altitude profile of square of Brunt‐Väisälä frequency in the MLT region has been derived using the temperature profile collected from the Na lidar instruments and the SABER instrument onboard TIMED satellite. It is found to be positive in the C‐type structure region for all the six cases which indicates that the regions are convectively stable. Simultaneous wind measurements, which allowed us to calculate the Richardson numbers and Reynolds numbers for three cases, suggest that the regions where the C‐type structure appeared were dynamically stable and nonturbulent. This paper brings out a hypothesis wherein the low temperature can increase the magnitude of the Prandtl number and convectively stable atmospheric region can cause the magnitude of Reynolds number to decrease. As a consequence, the remnant of previously generated KH billows in nearly “frozen‐in” condition can be advected through this conducive region to a different location by the background wind where they can sustain for a long time without much deformation. These long‐lived KH billows in the MLT region will eventually manifest the long‐lasting C‐type structures in the Na lidargram.more » « less
An official website of the United States government
